

SAND98-1224
Revision 1

Unlimited Release
Printed February 1999

Dynamic Isosurface Extraction
and Level-of-Detail in Voxel Space

John M. Linebarger
Information Systems Applications Department

Sandia National Laboratories
P.O. Box 5800, MS 1137

Albuquerque, NM 87185-1137

Peter B. Lamphere
Arthurine R. Breckenridge

Computer Architectures Department
Sandia National Laboratories

P.O. Box 5800, MS 0318
Albuquerque, NM 87185-0318

Abstract

A new visualization representation is described, which dramatically improves interactivity for
scientific visualizations of structured grid data sets by creating isosurfaces at interactive speeds and
with dynamically changeable levels-of-detail (LOD). This representation enables greater interactivity
by allowing an analyst to dynamically specify both the desired isosurface threshold and required level-
of-detail to be used while rendering the image. A scientist can therefore view very large isosurfaces
at interactive speeds (with a low level-of-detail), but has the full data set always available for analysis.
The key idea is that various levels-of-detail are represented as differently sized hexahedral "virtual
voxels," which are stored in a three-dimensional binary tree, or kd-tree; thus the level-of-detail
representation is done in voxel space instead of the traditional approach which relies on surface or
geometry space decimations. Utilizing the voxel space is an essential step to moving from a post-
processing visualization paradigm to a quantitative, real-time paradigm. This algorithm has been
implemented as an integral component of the EIGEN/VR project at Sandia National Laboratories,
which provides a rich environment for scientists to interactively explore and visualize the results of
very large-scale simulations performed on massively parallel supercomputers.

Index terms: Level-of-detail, isosurface extraction, voxel space, structured grids, kd-trees,
multi-resolution.

2

1. Introduction

A terabyte of information has become easy to generate; indeed, data sets of this size are
regularly being produced on the massively parallel Intel teraflop supercomputer at Sandia
National Laboratories. More recently, clusters of personal computers have begun to reach this
scale of computation. How can a scientist hope to comprehend this volume of data? How can
groups of scientists on separate continents jointly work with data sets of this size? A single
scientist cannot effectively examine this information using outdated text or two-dimensional
display methods. Instead, scientists require a globally distributed, collaborative environment
with interactive virtual worlds composed of computer generated visualizations. However, this is
not easy; the revolution in computing enabled by teraflop-class machines surpasses the
capabilities of traditional visualization and data analysis paradigms.

The Dynamic Isosurface Extraction and Level of Detail (referred to as DYNAISOLOD)
research has extended Sandia’s existing virtual environment tools by building a dynamic
isosurface extraction and multi-resolution (level-of-detail, or LOD) system in voxel space for
structured grid data sets that scales in immersion and in interactivity. By implementing a very
fast isosurface creation algorithm, it gives scientists the freedom to explore their data
interactively. This freedom is useless, however, if the scientist cannot render the isosurface at
interactive speeds. The DYNAISOLOD tool also enables a scientist to select the detail of the
resulting surface, and therefore reduce or increase the complexity (and therefore the rendering
speed) interactively. This means that a scientist can both manipulate the entire geometry easily
and analyze that geometry with great accuracy when desired, even with the largest data sets.

Isosurface extraction is an important technique for visualizing surfaces found in
volumetric data (i.e., data consisting of 3D scalar fields usually produced as the result of a
computer simulation). The canonical algorithm for extracting isosurfaces is the "marching
cubes" algorithm detailed by Lorensen and Cline [1], although more recently the use of particle
systems has been pursued as an alternative approach [13]. Researchers have proposed numerous
methods for creating levels-of-detail, including triangle decimation [2], the use of wavelet
functions for surface approximation [3], and more recently, progressive meshes [4] and
progressive simplicial complexes [5]. However, in all of these approaches, the sets of triangles
generated by the marching cubes algorithm are dependent on the chosen isosurface value. For
example, a user might request an isosurface showing the extent of the volume with a material
fraction of at least 0.55, that is, a surface enclosing the regions which are more than 55% filled
with material. In other cases the isosurface value may range from near zero up to large powers of
ten, which can be encountered when analyzing simulations of shock, temperature, or pressure
waves. With this type of data, interesting isovalues are often unknown in advance. Thus it is
always highly desirable to allow the analyst to explore the problem space by dynamically
changing the isosurface threshold. However, changing the isosurface value traditionally requires
a complete recalculation of the new surface. Since the EIGEN/VR project seeks to allow
arbitrary analysis of data immediately and interactively (i.e., without such lengthy recalculation),
a faster, dynamic isosurfacing technique provides the required solution.

3

The NOISE (Near Optimal IsoSurface Extraction) algorithm proposed by Y. Livnat, et al.
[6] provided the baseline for the required solution. It allows rapid isosurface extraction from
structured and unstructured data grids, such that the user can interactively change the isosurface
threshold in a visualization environment and quickly view the resulting surface. A multi-
dimensional search tree (called a kd-tree; see [7]) is used to store the minimum and maximum
values of each voxel in the volumetric data set, and the resulting "span space" is searched for a
given isosurface threshold. The output is a set of only those voxels that have potential
intersections with the new isosurface, which are then triangulated using the marching cubes
algorithm and finally rendered.

However, two needed enhancements were observed when we first implemented the
NOISE algorithm at Sandia National Laboratories. The first was the sheer number of triangles
generated from the ever-increasing growth of our simulation data volumes, which saturated the
hardware rendering capabilities even of the largest graphics machines produced in 1997 (the
Silicon Graphics, Inc. [SGI] Onyx2 Infinite Reality family). As might be expected, this
compromised the interactive response promised by the NOISE algorithm. Clearly, a dynamic
way of specifying both the isosurface threshold and the level-of-detail was needed to achieve an
acceptable rendering frame rate when navigating through large simulation data volumes with
many time steps. A particular benefit of such a multi-resolution approach is the ability to display
a coarse approximation of the data at interactive speeds while the user navigates rapidly, but
which also allows a finer approximation when she or he stops to study the details.

The second required enhancement was the solution of the well-known "ambiguous cases"
triangulation problem that occurs when using the marching cubes algorithm. Resolution of such
ambiguity either adds additional complexity or makes use of the data values in neighboring
voxels (which can also have the side effect of improving the shading of the resulting triangles
because of the gradient heuristic used; see [8] and [9]). Programs that perform marching cubes
triangulation with ambiguity resolution logic are usually run in batch mode. Adding the
additional logic to disambiguate the list of voxels returned by the NOISE algorithm during real-
time visualization would either have made the frame rate unacceptably slow when an isosurface
threshold was dynamically changed, or would have required the addition of additional
disambiguation data to each voxel returned from the search (thus ballooning the file size).
Fortunately, a straightforward approach that allows unambiguous triangulation of an arbitrary
voxel without regard for its neighbors (at the price of occasional surface anomalies) has been
published by C. Montani, et al. [10], who graciously provided us with a copy of the triangulation
table.

The research algorithms for level-of-detail presentations (some of which were mentioned
above) make adjustments to the geometry representations and, in our opinion, do not provide real
solutions suitable for large-scale data sets. They operate in geometry space (the surfaces), not in
voxel space that is most directly associated with the physical simulation code. In other words,
each algorithm assumes a stable underlying surface geometry, which is then represented in
varying levels of detail. Of course, the ability to dynamically specify the isosurface threshold at
visualization time implies that in such an approach there is no stable underlying geometry, since
the geometry generated depends entirely on the isosurface threshold value chosen. The analyst
cannot work with the data in real time if significant delays are introduced while new geometry is
created and another algorithm applied to reduce the data representation. Further, surface-based
level-of-detail representations no longer work with the original data, only with the generated
surfaces. To effectively visualize terabytes of information the visualization process will have to
move closer to the computation that generated the data. Currently, most visualization is done by

4

post-processing the data after a simulation has written its results to a disk file, generally in a
format convenient for the simulation code, but not for the visualization programs. This approach
has numerous limitations and has been shown not to scale in real time. In particular, three
dimensional volume data from a simulation should remain accessible as voxel data for the
visualizations; the ability to recover the original data values that a surface represents is required
in order to do effective quantitative analysis.

The approach we have taken with dynamic isosurfacing and level-of-detail repre-
sentations is a powerful extension of the NOISE algorithm. Different levels-of-detail are
represented as differently sized virtual voxels and the resolution value is stored as a third
dimension of the kd-tree. Adjacent voxel cells in the volumetric data grid are joined to create
larger "virtual voxels." For example, with structured rectilinear grids, the finest level-of-detail is
represented by a 1x1x1 voxel; coarser levels can be represented as 2x2x2 voxels, 3x3x3 voxels,
etc. Thus the level-of-detail representation is done in voxel space, not geometry space. Spatial
coherence of the resulting surface is largely preserved between virtual voxel resolutions because
of the interpolative nature of the marching cubes triangulation algorithm.

Figure 1: A simple isosurface with successively larger virtual voxels

2. Components of Dynamic Isosurface Extraction and Level of
Detail (DYNAISOLOD)

The components of DYNAISOLOD can conveniently be divided into two halves: a
parallel portion that uses the Message Passing Interface [MPI] standard to create a LODTree file
(a 3D kd-tree with associated data), and a visualization-time part that includes search, geometry-
creation, and rendering algorithms. Time and space optimizations have been added to each of
these two components.

5

The DYNAISOLOD algorithm is a component of Sandia’s EIGEN/VR project for
analyzing structured and unstructured grid simulation data sets produced by massively parallel
supercomputers. The first application has been a proof of concept using structured rectilinear
grid data sets produced by a Sandia-developed simulation code, CTH. An additional goal of this
project is to compute and visualize data on the supercomputers and then deliver the image-based
results to the desktop monitor, which is a complete paradigm shift from utilizing post-processing
graphic engines. As a result, care has been taken at each stage of DYNAISOLOD development
to ensure that the resulting data file is readable from a Java program, with the eventual goal of
providing a portable Java client which renders the geometry at the desired isosurface threshold
and level-of-detail. The geometry could be created either on a data storage and geometry
creation server (for large data volumes) or on the analyst’s desktop (for small data volumes).
Note that three visualization options exist depending on the capacity of the analyst’s workstation:
in descending order these options are visualization of geometry created on-the-fly directly from
the simulation data volume, visualization of geometry created from the simulation data volume in
a preprocessing step, and display of a two-dimensional image generated from the simulation data
volume by a visualization server.

3. Parallel Algorithm for Parallel LODTree File Creation

Before describing the file creation algorithm, a brief review of the structure of a kd-tree is
in order (see [7] for more details). In order to create this easily searchable, multidimensional
(i.e., multikey) data structure (such as the 3D data structure of an LODTree), a divide-and-
conquer approach is used. First, the data set is partitioned into two halves, one of which contains
nodes that have a higher key value than the root node, and the other containing nodes that have
lower values. These two halves are again partitioned, but this time according to the second key.
The four sub-branches are partitioned a third time according to the third key. Then the process
repeats itself again for each of the resulting subtrees, starting again with the first key. This
structure allows a very fast search, using any combination of criteria involving the three keys. In
our case, this can be envisioned as a three-dimensional binary tree where each branch represents
a new dimension. For DYNAISLOD, the three keys are the minimum value, the maximum
value, and the level-of-detail of the virtual voxel. This whole partitioning process operates on a
set of indexes into the original data set.

Root Node

M in Layer

M ax Layer

LOD Layer

M in < parent.m in M in > parent.m in

M ax > parent.m axM ax < parent.m ax

LOD > parent.LOD

LOD < parent.LOD = index to voxel cell in original sim ulation data

Figure 2: Three-dimensional LOD Search Tree

6

Like the NOISE algorithm, DYNAISOLOD uses a Quicksort-like partitioning scheme to
find a median node and partition the subtrees. However, two significant extensions, were made
to the NOISE algorithm. The first was the parallelization of the file creation algorithm, which
was implemented using MPI, the Message Passing Interface standard. At each Quicksort-like
recursive call, the top half of the node array is partitioned to another processor until the number
of processors in the processor array is reached; at that point all additional recursive partitioning is
done locally. (This approach to parallelization is frequently called “divide-and-conquer” with a
gather at the end; see [11].) A heavily recursive subroutine was written to deterministically
predict, based on the number of cells in the simulation data volume and the number of processors
in the processor array, the size of the message sent to each processor upon such a recursive split.
In addition, it also predicts the size of the resulting sorted message from each processor.
Knowing these sizes in advance allows the other processors in the parallel computation to be
prepared for work when they receive a message after a recursive array split. It also allows the
root processor to determine the correct order in which to receive the partitioned message data
from the child processors. Obviously, this strategy implies that the algorithm is most efficient
when the number of processors in the processor array is a power of two, but it works correctly for
an arbitrary number of processors.

The second extension was the extensive use of a bit-mapped representation of the data in
each virtual voxel in order to significantly reduce the size of the search tree. To allow the file to
be read by a Java program, compiler alignment of the in-memory data structure written out to the
file was carefully considered, the maximum array index value (and thus the maximum array size)
was limited to the contents of a 32-bit signed integer, and all numeric fields were defined as
signed. (It may be possible to remove this limitation as Java matures.) An abbreviated version
of the C++ header file for the structure follows.

typedef struct lod_file_header_struct
{
 char signature[SIGNATURE_SIZE]; // Version signature
 char source[SOURCE_SIZE]; // Source of the data
 int width, height, depth; // Dimensions of the data set
 int num_data_points; // Number of data points
 float min, max; // Min and Max for the tree
 int size; // Number of LOD nodes
 int resolutions; // The number of resolutions
} lod_file_header_t;

// A structure defining the whole in-memory LOD tree.
typedef struct lod_tree_struct
{
 lod_file_header_t header; // The file header information
 int* array_base_indices; // Array of indices into the data
 // for the base cell vertex
 char* min_max_vertex_coords;
 // Used to find the minimum/maximum data point in

 // each cell (keys 1 and 2 for the search)
 // The first 4 bits of this variable contain the

 // canonical vertex coordinate of the cell vertex
 // that has the minimum data value, and the last
 // 4 bits contain the canonical vertex coordinate
 // of the cell vertex that holds the max value.
 //

7

 // X111X111 <-- bitmap (X is unused bit)
 // mxyzaxyz mxyz = min cell vertex coordinate
 // axyz = max cell vertex coordinate
 char* cell_dimensions;

 // The size of the cell
 // The first three bits of this are flags,
 // indicating that the cell is not regular in a
 // given dimension. The last 4 bytes contain the
 // the regular size of the cell.
 //
 // X1111111 <-- bitmap (X is unused bit)
 // xyzssss x = is width irregular?
 // y = is height irregular?
 // z = is depth irregular?
 // s = regular cell size (2^4 max)
 // Irregular cells occur only at the edges of
 // the structured grid data set. Therefore,
 // if x, y, or z is irregular, the extreme
 // {<x, y, z>} coordinates in the cell are
 // equal to the maximum possible width,
 // height or depth.
 float* data_values; // Array of scalar data values; the dimension
 // is width * height * depth
 float* data_coords[3]; // Arrays of coordinates associated with the
 // data value array, for x, y, z.
} lod_tree_t;

As the file structure indicates, an LODTree consists of the kd-tree “index” into the structured grid
data array as well as the data array itself (and the 3D coordinates that apply to the scalar values in
the data array). The “index” is composed of three synchronized arrays (array_base_indices,
min_max_vertex_coords, and cell_dimensions), each of which contains header.size
number of elements. Note that the possibility of irregularly shaped virtual voxels at the edges of
the grid is taken into account by this representation, and that the largest possible virtual voxel is
16x16x16. Also note that this compressed bitmapped representation works only for structured
(rectilinear) grids.

A more detailed account of the flow of the LODTree file creation algorithm follows:

A. The first processor initializes the MPI communications group, reads in the file,
calculates the minimum and maximum data values for all the voxel cells in the
file, and then begins its first Quicksort-like partitioning pass through the data.
When the median cell is found, this processor schedules out the top half of the
array to the next processor in the processor group and then proceeds to perform
the same partitioning algorithm recursively on the bottom part. Each processor in
turn, when it receives a message that contains its data, will perform the same
partitioning algorithm on its message and farm out the top half to the next
processor in the processor group, whose number is deterministically predicted by
the highly recursive predictive routine mentioned earlier. It then continues to
perform the partitioning algorithm on the bottom half of its array. This array
subdivision and subcontracting to other processors continues until the limit of the
processor array is reached, at which time the recursive partitioning algorithm is

8

performed locally by each process.
B. For efficiency, messages contain only the minimum amount of virtual voxel

information necessary for the partitioning routine to function: the minimum and
maximum data values, the level-of-detail, and the index into the full data array
contained in processor 0 where all additional information is kept. The index is
used by processor 0 to reconstitute the full data later when all of the correctly
ordered virtual voxel stub messages have come back from all the processors.

C. Experimental analysis has shown that the most time-consuming and expensive
part of the creation of the kd-tree is the Quicksort-like recursive partitioning
(usually at least 90% of the serial run time). Thus the initial parallelization
strategy chosen was simply to parallelize the recursive partitioning activities, not
the initial calculation of the minimum and maximum data values for each voxel.

D. Once all the processors have finished their partitioning chores, processor 0
interrogates each process in turn, in the order that was also dynamically predicted
by the recursive prediction routine, and retrieves the message stub back from each
processor in correct kd-tree order. That message stub order is then used to write
out the full kd-tree data; the result is a LODTree file, a 3D kd-tree. (Optionally,
the integrity of the kd-tree can then be checked to ensure that the LOD-tree is a
true kd-tree [i.e., is structured correctly as a three-dimensional kd-tree]).

4. File Creation Options and Optimizations

Numerous run-time options and optimizations for the parallel file creation program are
available. These options include:

• The maximum number of levels-of-detail desired
• The virtual voxel size increment, in each dimension, for each level-of-detail (defaults

to 1)
• A post-processing check of the structural integrity of the LODTree file (i.e., to verify

that it is indeed a three-dimensional kd-tree)
• The "virtual voxel overlap factor" that specifies by how much an edge voxel can

expand in order to prevent rows of small voxels at the edges of the grid.
• An optimization option for shared memory implementations of MPI, which

synchronizes memory allocations and message passing associated with recursive
splits between processors in order to reduce the overall memory footprint; this option
essentially trades memory space for run time.

In addition, the MPI run-time environment provides a parameter that specifies the number of
processors in the processor group.

5. Run-time Search and Geometry Creation Algorithm

At run-time we see how the effort spent creating the searchable tree results in much
greater efficiency and flexibility for the user. The rendering component of the NOISE algorithm

9

starts with a search in span space, returning the set of cells which contain the isosurface value
(i.e., whose minimum value is less than the isovalue, and whose maximum value is greater). Our
multi-resolution DYNAISOLOD algorithm is essentially the NOISE algorithm with an extra
parameter, the desired resolution (or level-of-detail) of the resulting isosurface.

After the LODTree file has been loaded, the user provides an isosurface threshold value
(an isovalue) and a desired level-of-detail. The level-of-detail may be furnished indirectly,
perhaps as some function of current navigation speed. The data set is then searched for cells that
contain this isovalue and are of the appropriate size to create the correct level-of-detail. Recall
that the cells in the data set have been sorted according to the three keys: minimum data value
present in the cell, maximum data value present in the cell, and the size of the cell (resolution, or
level-of-detail). The cells that we want to find are those with a minimum data value below the
isovalue and a maximum data value above that threshold. These cells contain data points that
intersect that isovalue, from which the geometric approximation of the isosurface can be
generated.

Each node of the tree is interrogated in terms of the appropriate search key, as each level
of the tree is partitioned on a different key. For example, the first level (root node) of the tree is
searched by the minimum vertex value of the voxel (cell). If the minimum value is higher than
the desired isovalue, the left child of the node is searched to find a lower isovalue, and therefore
a cell that might contain the isovalue. On the other hand if the minimum value is lower than the
desired isovalue, then both children are searched, because both higher and lower minimum
values might still be larger than the isovalue.

At the next level, the cell maximum is queried. If the cell maximum is less than the
isovalue, we know we need a higher maximum, and therefore must search all nodes along the
right child. Otherwise, both children are searched. At the third level, the LOD key is searched.
If the LOD of the current node is greater that the desired LOD, we search the left branch. If it is
lesser, we follow the right branch. If the LOD happens to be what we want, then we search both
branches, because both branches could contain nodes of the appropriate LOD.

This recursive search process continues for all subsequent levels of the tree: the
minimum key, followed by maximum key, followed by LOD key and so on until the tree has
been exhausted. If at any point during the search, the cell minimum is less than the isovalue, the
cell maximum is greater than the isovalue, and the LOD of the cell is equal to the desired LOD,
then that cell is added to the list of cells that contain the isosurface. Pseudocode of the search
algorithm follows:

void search_minimum(branch) {
 if(minimum value in cell > isovalue) // isosurface does not
 search_maximum(left branch); // intersect cell
 else {
 if(maximum value in cell > isovalue && LOD of cell ==
 desired LOD)
 add cell;
 search_maximum(right branch);
 }
}

void search_maximum(branch) {
 if(maximum value in cell < isosurface) // isosurface does not
 search_lod(right branch); // intersect cell
 else {
 if(minimum value in cell < isosurface && LOD of cell ==

10

 desired LOD)
 add cell;
 search_lod(left branch);
 }
}

void search_lod(branch) {
 if(LOD of cell > desired LOD)
 search_minimum(left branch);
 else
 if(LOD of cell < desired LOD)
 search_mininum(right branch);
 else {

 // LOD == desired LOD
 if(minimum value in cell < isovalue &&

 maximum value in cell > isovalue)
add cell;

 search_minimum(right branch);
 search_minimum(left branch);

}
}

Various optimizations can improve the performance even of this efficient algorithm. For
example, once we know that the minimum data value for the cell is less than the isovalue, we
know that this will be true for all cells on the left branch of the tree (because all cells on the left
branch have a smaller key than the parent node). Therefore, we no longer have to test the
minimum key past that point. The same thing can be done for the maximum key. For the
resolution (level-of-detail) key, it is possible to optimize the search only if we are aware that the
level-of-detail desired is either the greatest or the least possible. We can stop testing the LOD
keys if the search has passed on to the left (i.e., smaller) subtree of an already minimum LOD
node. Since the search is most time-consuming at the lowest level-of-detail, this is a worthwhile
optimization.

Once the cells containing the isosurface are found DYNAISOLOD generates triangles on
a cell by cell basis, just as the Marching Cubes algorithm [1] does for each cell in the data set.
First, it finds which corners of the cell are underneath or above the isovalue to determine which
edges of the cell the isosurface intersects. From this we can decide how to triangulate the
isosurface in the cell. Using the modified (i.e., disambiguated) triangulation table mentioned
above, we generate a set of triangles whose vertices are linearly interpolated along the cell edges.

This process results in redundant calculation of vertices, as triangles in each cell share
vertices with triangles in neighboring cells. As we calculate each vertex we store it in a hash
table, keyed to the edge that it lies on (since the isosurface approximation only intersects each
cell edge at most once). When we encounter the same vertex again, we can simply copy the
vertex coordinates from the hash table. After the coordinates of the triangles have been
calculated, normals are computed by a cross-product, and then stored (via the same hash table)
for later averaging with normals of other triangles that have the same vertex. The same hash
table can be used to arrange adjacent triangles into triangle strips—a more compact
representation that allows faster rendering, although it requires extra computation time to create.
This offers a tradeoff between geometry creation and geometry time, which can vary by hardware
platform.

11

6. Rendering Options and Optimizations

In keeping with DYNAISOLOD as a component of a scientific data analysis toolkit,
several rendering options are provided and can be user-specified. The first option toggles the
direction of the normals generated for the isosurface triangles. Some scientific data sets need
normals pointed in the opposite direction, so the facility to choose the direction of the normals
was provided. Second is the ability to render wire frame, flat shading, or smooth (Gouraud)
shading versions of the generated triangles. The third involves the use of display lists and hash
tables both to increase the speed of the rendering and to improve the shading of the resulting
surface. The hash table is used to blend normals together for triangles that share vertices. A
final option is to use the same hash table to generate triangle strips instead of individual triangles.

The goal is to provide user-specified tradeoffs between speed and accuracy. For ultimate
speed, the user might choose the highest level-of-detail and wire frame rendering in order to
navigate quickly through the data set; for greatest accuracy, the user might turn the hash table on
and specify smooth shading in order to render the surface in the most precise way possible.

7. Results

The observed results are divided into the same categories as DYNAISOLOD itself: off-
line parallel file creation and run-time tree search, geometry creation, and rendering.

Many metrics exist to measure the performance of a parallel algorithm (see [11]), but for
the purposes of this paper we have chosen actual speedup

)(
)1(

NT

T

where the T() is the time function and its argument is the number of processors used, versus
expected speedup for a divide-and-conquer parallel algorithm, which is approximately

N

N

2log

where N is the number of processors used. The parallel algorithm contains approximately 25%
serial code, which would make the upper bound of the expected speedup of the off-line (i.e., pre-
processed) parallel file creation

,29.2
75.04*)25.0(

4

)1(
=

+
=

−+ ββN

N

where β is the fraction of the program that is serial, using Amhdal’s Law. In contrast, the upper
bound of the expected speedup is

25.325.0*)14(4)1(=−−=−− βNN

using the Gustafson-Barsis Law, and is

12

2
4log

4

log 22

==
N

N

using N = 4 and a formula for a first order approximation of the speedup of a divide-and-conquer
parallel algorithm (see [11]). (Note that communication costs and operating system overhead are
intentionally not considered by the expected speedup equation models above.)

Figure 3: Progressively lower levels of detail applied to a 27 million cell shock physics
calculation

Two sets of timing results follow. The first shows the creation of an LODTree file from a
28 million cell data set on an SGI Onyx Infinite Reality system with four R10000 processors and
4 GB of main memory; the second depicts the creation of an LODTree file from a 100 million
cell data set on an SGI Onyx2 Infinite Reality machine with 16 R10000 processors and 32 GB of
main memory. Each SGI machine utilized a shared memory implementation of MPI. Three
timing graphs are shown, one for the creation time of both files, and an additional one for the
parallelization speedup results for each file. Both actual and expected speedup for a divide-and-
conquer algorithm are plotted on the 27 million cell graph, while only actual speedup is shown
on the 100 million cell graph.

13

0

2

4

6

8

10

12

14

16

18

20

1 2 4 8 16

Processors

M
in

ut
es 100 Million Cell LODTree

27 Million Cell LODTree

Figure 4: LODTree File Creation Timings

0.75

1

1.25

1.5

1.75

2

2.25

1 2 4

Processors

S
pe

ed
up Actual Speedup

Expected Speedup

Figure 5: Actual vs. Expected Speedup for a 27 Million Cell LODTree File

14

0.5

0.75

1

1.25

1.5

1 2 4 8 16

Processors

S
pe

ed
up

Actual Speedup

Figure 6: Actual Speedup for a 100 Million Cell LODTree File

Different results were exhibited by the two tests. Whereas the first test demonstrated a
nice speedup as processors were added (and at least approached the expected speedup), the
second test showed a slowdown as one processor was added, followed by a speedup as other
processors were added, then another slowdown when all 16 processors were used. Our best
explanation for this phenomenon is two-fold:

1. The large message communication and operating system overhead engendered by
handling data sets of this massive size; and

2. The data dependencies of this algorithm. Since it is Quicksort-based, O(n)
performance is expected in the average case, but O(n2) performance can be
encountered in the worst case (see [12]). Since this algorithm is only as fast as the
slowest processor, its performance can be affected by the particular data being
partitioned; the number of swaps required to find the median element is extremely
data-dependent.

The storage overhead added to the base simulation volume data is also a concern, given
the size of the data sets that we are working with. For each node in the tree, a four byte index is
required, as well as two bytes for the min, max and LOD keys (see the description of the
LODTree file above). Because of the way that virtual voxel expansion is done, each level of

15

detail creates additional cells equal to the original number of cells divided by the cube of the cell
size. Therefore, there are a total of

∑
=

n

i i
k

1
3

1

nodes in the LODTree file (where n is the number of levels-of-detail and k is the number of
voxels (cells) in the data file). For an infinite number of levels of detail,

∑
∞

=1
3

1

i i

constitutes the Riemann zeta function

)3(ζ
which converges to the value 1.20206. This factor provides an upper bound for the fractional
number of LODTree cells required for each voxel (cell) in the simulation data file, and thus for
the amount of storage required for the LODTree file. The conversion from cells into actual bytes
of “index” (i.e., LODTree) overhead required is straightforward. For example, in an LODTree
that contains ten levels of detail,

12.1
110

1
3

=∑
=i i

which multiplied by the number of bytes occupied by each LODTree cell (six) yields 6.72 bytes
of overhead per cell in the original structured grid data set. If we use four bytes as an
approximation for the storage consumed by each voxel in the data file (the actual value is slightly
higher to account for the data points that constitute the edges of the structured grid), we arrive at
an approximate byte overhead factor of

.7.1
4

72.6 =

Heavy use of a bit-mapped cell data representation was required in order to achieve this result
(see description of the LODTree file above).

However, when comparing the overhead file size, we also need to compare the
functionality obtained. Though geometry representations for an isosurface are much more
compact, they require a separate representation for each threshold and level-of-detail. Thus, even
if a geometry represention were a tenth the size of an LODtree file, the analyst would only be
able view ten isosurface thresholds before the static geometry approach became less efficient
than the dynamic technique.

The run-time algorithm was tested on one R10000 processor of an SGI Onyx with 4 GB
of main memory using three different CTH calculations run on Sandia’s Intel teraflops
supercomputer. We tested four different virtual voxel sizes, ranging from one, the original
resolution of the data, to four, where each virtual voxel encloses 64 original data points. Also,
we tested each data set using the triangle strip geometry representation to determine whether the
computational cost of calculating the triangle strips resulted in a greater rendering time payoff.

16

The results are given in the following three tables and two figures:

LOD Number of
Triangles

Search time (sec) Geometry
Creation (sec)

Rendering Time
(sec)

1 (High) 560,688 0.35 10.29 4.95
2 137,212 0.10 2.05 2.42
3 60,164 0.03 0.96 0.98

4 (Low) 33,760 0.02 0.42 0.54

LOD Number of
Triangle Strips

Search time (sec) Geometry
Creation (sec)

Rendering Time
(sec)

1 (High) 67,264 0.32 16.29 2.66
2 13,538 0.09 3.28 1.89
3 7,754 0.03 1.48 0.83

4 (Low) 3,522 0.02 0.70 0.44

Table 1: LOD Rendering Performance Results using a 27 Million Cell Data Set

LOD Number of
Triangles

Search time (sec) Geometry
Creation (sec)

Rendering Time
(sec)

1 (High) 465,856 0.25 6.16 3.01
2 110,528 0.08 1.32 1.65
3 48,158 0.03 0.56 0.68

4 (Low) 26,704 0.02 0.30 0.38

LOD Number of
Triangle Strips

Search time (sec) Geometry
Creation (sec)

Rendering Time
(sec)

1 (High) 51,660 0.26 10.45 1.48
2 12,406 0.08 2.16 0.58
3 6,044 0.03 0.90 0.25

4 (Low) 3,371 0.02 0.48 0.13

Table 2: LOD Rendering Performance Results using a 54 Million Cell Data Set

17

LOD Number of
Triangles

Search time (sec) Geometry
Creation (sec)

Rendering Time
(sec)

1 (High) 276,180 0.23 3.68 1.44
2 61,796 0.09 0.69 0.27
3 18,748 0.01 0.23 0.07

4 (Low) 8,460 0.01 0.08 0.04

LOD Number of
Triangle Strips

Search time (sec) Geometry
Creation (sec)

Rendering Time
(sec)

1 (High) 60,584 0.22 5.81 1.05
2 14,268 0.08 1.03 0.16
3 4,686 0.01 0.32 0.05

4 (Low) 2,243 0.01 0.14 0.02

Table 3: LOD Rendering Performance Results using a 100 Million Cell Data Set

0

100,000

200,000

300,000

400,000

500,000

600,000

1 2 3 4

LOD (Decreasing Detail ==>)

N
um

b
e

r o
f T

ria
ng

le
s

Da ta se t of 27 Million C e lls

Da ta se t of 54 Million C e lls

Da ta se t of 100 Million C e lls

Figure 7: Triangle Reduction at Decreasing Levels of Detail

18

0

5

10

15

20

25

1 2 3 4

LO D (D e c re a sing D e ta il = = >)

Se
c

o
nd

s

D a ta se t o f 27 M illio n C e lls

D a ta se t o f 54 M illio n C e lls

D a ta se t o f 100 M illio n C e lls

D a ta se t o f 27 M illio n C e lls (w ith tria ng le strip s)

D a ta se t o f 54 M illio n C e lls (w ith tria ng le strip s)

D a ta se t o f 100 M illio n C e lls (w ith tria n g le
strip s)

Figure 8: Total Isosurface Generation Time (Including Rendering)

The results clearly show that the search and creation algorithm scaled well to large
computations. Like the 2D tree of the NOISE algorithm [6], the LOD tree is searchable in O(log
N) time. This indicates that the total isosurface generation time is primarily dependent on the
number of triangles in the isosurface, rather than the number of cells in the data set. Thus, on
the smallest data set above, which happened to have a much larger generated isosurface in terms
number of triangles, the algorithm took longer to generate the isosurface. This behavior is
exactly the reverse of algorithms like marching cubes [1] which scale on the number of cells that
they have to search. Also notice that in general, the triangle strip representation of the geometry
did not decrease the total isosurface generation time.

However, the real success of the LOD algorithm is revealed as we progress to lower
levels of detail—we see an exponential decrease in the number of triangles that are generated,
and therefore also the total rendering time. Even though the largest isosurface is completely
beyond acceptable interactive rendering frame rates at the highest level of detail, it can be
displayed at a more acceptable speed (two to three frames a second) using a lower level of detail.
Thus we allow the scientist or analyst to examine her or his data at interactive frame rates
without losing the capability of looking at an arbitrary isosurface of the original simulation data.

We can conclude from the run-time performance at lower levels of detail (i.e., larger
virtual voxels) that despite increasingly larger problem sizes, dynamic isosurfacing and level-of-
detail can scale to be interactive and almost immediate. By using a lower level-of-detail for

19

navigation, the rendering times are reduced by an order of magnitude, while still retaining the
original data for exact analysis. This makes data sets that were previously too large for existing
rendering hardware to now be readily accessible to the working scientist, which is a critical step
in visualizing teraflop-class problems.

DYNAISOLOD also offers another advantage over static geometry methods in that it
keeps the original data field in memory for scientists to analyze in ways other than isosurfacing.
For example, if a scientist desired to query a data value at a specific point, display a colored cut
plane through the data, or use some other dynamic analysis tool, she or he would be able to so.
In a case where only static geometry has been created and the original simulation data has been
discarded, these kinds of quantitative capabilities are unavailable—all the scientist can look at is
the previously generated isosurfaces.

Note that DYNAISOLOD is not meant to replace traditional marching cube methods, but
instead should be used in conjunction with those methods. Statically generated geometry is quite
adequate for data such as material volume fractions that do not need dynamic isosurfacing
capability. Also, such static techniques have a very low impact on disk storage and main
memory requirements. However, for simulation data objects with a much greater range of
values, such as pressure fields and shock waves, the rich analysis capability provided by
DYNAISOLOD has proven to be very helpful. A slider control for the dynamic isosurface
threshold, provided by the visualization tool user interface, can range through any data value
present in the simulation data providing a powerful quantitative analysis tool. Likewise, a
dynamic level-of-detail slider control can range independently through all the levels-of-detail
present. An extremely useful application is to tap the dynamic features of DYNAISOLOD early
in the analysis process to discover appropriate isosurface threshold values to use for static
geometry creation in subsequent stages of analysis.

8. Future Research Areas

Several future research areas have been identified. An obvious first is to reduce the serial
component of the off-line parallel file creation algorithm, and to improve the performance of the
triangle strip run-time creation algorithm. An additional goal is to move the file creation
algorithm to a distributed memory parallel architecture like Sandia’s Intel teraflop supercomputer
or a network of personal computers. However, a current weakness in the DYNAISOLOD
algorithm is that the first parallel process must be able to fit all of the simulation data in memory
at one time in order to create the initial array partitioned around the median voxel. Thus the size
of the file being processed is limited by the amount of memory available to the initial processor.
For distributed memory machines (like the 128MB-per-node Intel teraflop supercomputer),
which have a limited amount of memory available at each processor node, this poses a
considerable porting challenge.

Another future research area is to link the DYNAISOLOD rendering engine to a number
of different visualization application uses. For example, automatically generating triangles at a
lower level-of-detail when the user is navigating through the data set in the visualization
environment, sensing when the user stops navigating, and doing progressive refinement from
there until the highest resolution in the file is reached, would be an extremely useful capability in
exploring large, detailed data spaces.

Because this proof of concept was so successful, a future research area is the extension of
this approach to unstructured data volumes. In order to keep the resulting file size as small as

20

possible, parallel compression and run-time decompression of voxel vertex data may need to be
performed, which implies that the file representation of structured and unstructured grid data will
probably be different. Another goal is intelligent level-of-detail, in which the voxel size at any
given level-of-detail could vary depending on the rate of change of the data values in the cell.
The goal is file size reduction, accomplished by allowing arbitrarily large virtual voxels at any
given level-of-detail in areas of the grid where the data values were not changing very much, and
smaller virtual voxels at the same level-of-detail in areas of the grid where the data was changing
rapidly. Such an approach forms a tradeoff between detail and space; the canonical voxel size
for that LOD is maintained when detail is necessary (i.e., in voxels where the data values are
changing rapidly) and can be expanded in voxels where the data was relatively static. A final
future research area is to support tetrahedral data as well as hexahedral data.

9. Acknowledgements

This work was supported by Sandia National Laboratories, a multi-program laboratory
operated by Sandia Corporation (a Lockheed Martin company) for the United States Department
of Energy under contract DE-AC04-94AL85000. The assistance of other Sandia team members,
specifically Tom Anderson and Patricia Crossno, in understanding the problem space and
brainstorming possible solutions is also gratefully appreciated.

10. References

[1] W.E. Lorensen and H.E. Cline, "Marching Cubes: A High Resolution 3D Surface
Construction Algorithm," Computer Graphics, vol. 21, no. 4, pp. 163-169, July 1987.

[2] W.J. Schroeder, J.A. Zarge, and W.E. Lorensen, "Decimation of Triangle Meshes,"
Computer Graphics, vol. 26, no. 2, pp. 65-70, July 1992.

[3] M.H. Gross, R.Gatti, and O. Staadt, "Fast Multi-resolution Surface Meshing", IEEE
Visualization '95 Proceedings, pp. 135-142, Nov. 1995.

[4] H. Hoppe, "Progressive Meshes," ACM SIGGRAPH '96 Proceedings, pp. 99-108, Aug.
1996.

[5] J. Popovic and H. Hoppe, "Progressive Simplicial Complexes," ACM SIGGRAPH '97
Proceedings, pp. 217-224, Aug. 1997.

[6] Y. Livnat, H.-W. Shen, and C.R. Johnson, "A Near Optimal Isosurface Extraction
Algorithm Using the Span Space," IEEE Transactions on Visualization and Computer
Graphics, vol. 2, no. 1, pp. 73-84, March 1996.

[7] J.L. Bentley, "Multidimensional Binary Search Trees Used for Associative Searching,"
Communications of the ACM, vol. 8, no. 9, pp. 509-517, September 1975.

[8] G.M. Nielson and B. Hamann, "The Asymptotic Decider: Resolving the Ambiguity in
Marching Cubes," IEEE Visualization '91 Proceedings, pp. 83-91, October 1991.

[9] A. Van Gelder and J. Wilhelms, "Topological Considerations in Isosurface Generation,"
ACM Transactions on Graphics, vol. 13, no. 4, pp. 337-375, October 1994.

[10] C. Montani, R. Scateni, and R. Scopigno, "A modified look-up table for implicit
disambiguation of Marching Cubes," Visual Computer, vol. 10, no. 6, pp. 353-355, 1994.

[11] T. G. Lewis and H. El-Rewini with In-Kyn Kim. Introduction to Parallel Computing.

21

Englewood Cliffs, New Jersey: Prentice-Hall, 1992.
[12] R. Sedgewick. Algorithms in C++. Reading, Mass.: Addison-Wesley Publishing Co.,

1992.
[13] Patricia J. Crossno and Edward S. Angel. “Isosurface Extraction from Volume Data

using Particle Systems.” Sandia National Laboratories Report SAND95-1131C, May
1995.

22

Distribution:

MS 1140 Jim Rice (6500)
MS 0977 Bill Cook (6524)
MS 1138 Larry Ellis (6531)
MS 1138 Bruce Malm (6532)
MS 1138 Sharon Chapa (6533)
MS 1137 Ken E. Washington (6534)
MS 1137 John M. Linebarger (6534)
MS 0318 George S. Davidson (9215)
MS 0318 Arthurine R. Breckenridge (9215)
MS 0318 Peter B. Lamphere (9215)

MS 9018 Central Technical Files (8940-2) [1]
MS 0899 Technical Library (4414) [5]
MS 0619 Review & Approval Desk (12690) [2]

For DOE/OSTI

	1.	Introduction
	2.	Components of Dynamic Isosurface Extraction and Level of Detail (DYNAISOLOD)
	3.	Parallel Algorithm for Parallel LODTree File Creation
	4.	File Creation Options and Optimizations
	5.	Run-time Search and Geometry Creation Algorithm
	6.	Rendering Options and Optimizations
	7. Results
	8.	Future Research Areas
	9.	Acknowledgements

